The influence of dipole moments on the mechanism of electron transfer through helical peptidesw
نویسندگان
چکیده
The life time of aromatic radical cations is limited by reactions like b-elimination, dimerization, and addition to the solvent. Here we show that the attachment of such a radical cation to the C-terminal end of an a-/310-helical peptide further reduces its life time by two orders of magnitude. For PPII-helical peptides, such an effect is only observed if the peptide contains an adjacent electron donor like tyrosine, which enables electron transfer (ET) through the peptide. In order to explain the special role of a-/310-helical peptides, it is assumed that the aromatic radical cation injects a positive charge into an adjacent amide group. This is in accord with quantum chemical calculations and electrochemical experiments in the literature showing a decrease in the amide redox potentials caused by the dipole moments of long a-/310-helical peptides. Rate measurements are in accord with a mechanism for a multi-step ET through a-/310-helical peptides that uses the amide groups or H-bonds as stepping stones.
منابع مشابه
The influence of dipole moments on the mechanism of electron transfer through helical peptides.
The life time of aromatic radical cations is limited by reactions like β-elimination, dimerization, and addition to the solvent. Here we show that the attachment of such a radical cation to the C-terminal end of an α-/3(10)-helical peptide further reduces its life time by two orders of magnitude. For PPII-helical peptides, such an effect is only observed if the peptide contains an adjacent elec...
متن کاملTheoretical study of the effects of substituent and quadrupole moment on π-π stacking interactions with coronene
Stability of the π-π stacking interactions in the Ben||substituted-coronene and HFBen||substituted-coronene complexes was studied using the computational quantum chemistry methods (where Ben and HFBen are benzene and hexaflourobenzene, || denotes π-π stacking interaction, substituted-coronene is coronene molecule which substituted with four X groups, and X= NH2, CH3, OH, H, F, CF3, CN and NO). ...
متن کاملComparison of convective heat transfer of turbulent nanofluid flow through helical and conical coiled tubes
Application of nanofluid and coiled tubes are two passive methods for increasing the heat transfer. In the present study, the turbulent flows of water and nanofluid in coiled tubes heat exchanger were numerically studied. CuO-water nanofluid containing 1 vol% copper oxide nanoparticles was used and single-phase approach was considered for nanofluid flow. The effect of different geometrical para...
متن کاملInvestigation on Turbulent Nanofluid Flow in Helical Tube in Tube Heat Exchangers
In this study, the thermal characteristics of turbulent nanofluid flow in a helical tube in the tube heat exchanger (HTTHE) were assessed numerically through computational fluid dynamics (CFD) simulation. The findings of both the turbulent models: realizable k-epsion (k-ε) and re-normalisation group (RNG) k-epsilon were compared. The temperature distribution contours show that realizable and RN...
متن کاملSelf-Fields Effects on Gain in a Helical Wiggler Free Electron Laser with Ion-Channel Guiding and Axial Magnetic Field
In this paper, we have investigated the effects of self-fields on gain in a helical wiggler free electron laser with axial magnetic field and ion-channel guiding. The self-electric and self-magnetic fields of a relativistic electron beam passing through a helical wiggler are analyzed. The electron trajectories and the small signal gain are derived. Numerical investigation is shown that for grou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013